NATIONAL ACADEMY OF SCIENCES OF UKRAINE
State Museum of Natural History
Biodiversity Data Centre

Aglais urticae (Linnaeus, 1758)

Synonym
  • Papilio urticae Linnaeus, 1758
  • Aglais adumbrata Raynor, 1909
  • Aglais alba Raynor, 1909
  • Aglais angustibalteata Raynor, 1909
  • Aglais brunneoviolacea Raynor, 1909
Vernacular Name Small Tortoiseshell
Images
Conservation status No status defined
Western Ukraine, VI-X, III-V(1-2) (Канарський, 2007). A colourful Eurasian butterfly in the family Nymphalidae. Adults feed on nectar and may hibernate over winter; in warmer climates they may have two broods in a season. While the dorsal surface of the wings is vividly marked, the ventral surface is drab, providing camouflage. Eggs are laid on the common nettle, on which the larvae feed. It is a medium-sized butterfly that is mainly reddish orange, with black and yellow markings on the forewings as well as a ring of blue spots around the edge of the wings. It has a wingspan ranging from 4.5–6.2 cm.The small tortoiseshell is the national butterfly of Denmark. It is found throughout temperate Europe, Asia Minor, Central Asia, Siberia, China, Mongolia, Korea and Japan, wherever common nettle which their larvae feed on is found. There are a few records from New York City which, however, are believed to be of introduced insects. Once among the most common butterflies in Europe and temperate Asia, this butterfly is in very rapid decline, at least in Western Europe. This decline cannot be explained by the decline of its host plant, because the nettle is widespread and even enjoys the general eutrophication of the environment. The chrysalis is sometimes eaten by wasps, but these are also in strong regression. The effect of other phenomena are still poorly understood (environmental degradation, air pollution, contamination by pesticides). Scientific evidence shows that the summer drought is a cause of declining populations, because larvae grow normally on drenched leaves (but hatchlings were even rarer the wet summers of 2007 and 2008). However, before 2000, according to data from an English butterfly monitoring programme, there was a good correlation between reproductive success, the abundance of populations of this species and the host plant moisture stress. From 1976 to 1995, the butterfly had more success in summers that were cool and wet at the beginning of summer than when it was hot and dry. This butterfly may then be sensitive to global warming. As with several nymphalid butterflies, the caterpillars feed on stinging nettles (Urtica dioica) and small nettle (Urtica urens). Adults feed on nectar. The species has one of the longest seasons of any Eurasian butterfly, extending from early spring to late autumn. Adults overwinter in hibernation, emerging on the first warm sunny days of the year to mate and breed. In southern parts of the range there may be two broods each year, but northern insects are inhibited by long length of summer days from breeding a second time. Tortoiseshell butterflies usually began to emerge from their pupa from mid-June into August. They began hibernation sometime in October and immediately show territorial behaviour after hibernation. The tortoiseshell butterflies that are found in the north usually have one brood a season, whereas further south these butterflies can have two broods. The ability to go through three generations of butterflies in a year is due to the tortoiseshell butterflies' decreased thermal requirement. The larvae of this butterfly are social. These larvae can be found on Urtica dioica, which have a high nitrogen content and lots of water in the leaves. The small tortoiseshell butterfly tends to enter hibernation by mid to late September. Typically this butterfly will try to hibernate in dark sheltered locations. Because of this hibernation, they need to accumulate a lot of fat to survive the winter. The tortoiseshell needs at least 20% of its body weight in lipids in order to survive, making them much slower. Towards the end of their foraging for hibernation, they are much more susceptible to attacks by birds because of their low muscle to body mass ratio. During the first few weeks of hibernation, tortoiseshell butterflies are very susceptible to predator attacks. Up to 50% of the population hibernating in any given area can be eaten. The butterflies that hibernate in areas containing more light, and that are accessible to rodents who can climb, are the most susceptible to this type of predation. During hibernation tortoiseshell butterflies are able to supercool in order to keep from freezing. In sheltered areas, these butterflies can stand up to −21 degrees Celsius without freezing. However, they experience rapid weight loss during unusually mild winters.
Book reference
Experts

Taxonomic branch

Biota
Eukaryota
Animalia
Eumetazoa
Arthropoda
Hexapoda
Insecta
Lepidoptera
Nymphalidae