State Museum of Natural History
Biodiversity Data Centre

Lepus europaeus Pallas, 1778

Vernacular Name
European Hare, Brown Hare, European Brown Hare
Conservation status
Value of species
Game (hunting) species
There has been recent evidence that suggests that Petter's (1959, 1961) hypothesis of conspecificity of Lepus europaeus and L. capensis may be correct. A study of the nuclear gene pool of L. capensis, L. europaeus and the North African Hare, indicated that the North African Hare as well as L. europaeus belong to L. capensis (Ben Slimen et al. 2005). However, a study of the mtDNA of these three groups indicated a significant degree of divergence supporting species specific designation (Ben Slimen et al. 2006). Ben Slimen et al. (2008a) suggest that in a case such as the genus Lepus, where evolution is "rapid and to some extent reticulate" species designation based solely on mtDNA is misleading without examination of the nuclear gene pool. Ben Slimen et al. (2008a) has shown that genetic differentiation between L. capensis and L. europaeus could be attributed to geographic distance rather than divergence. They speculate that gene flow may be occurring in the Near East where distributions meet resulting in the potential for intergraded populations. Ben Slimen et al. (2008b) propose that "a combined phylogenetic, phylogeographic, and population genetic approach,…, based on various nuclear and mitochondrial markers and including other biological characters, such as phenotypic and morphometric data," are needed for conclusive evidence of a single species complex. Until data are available supporting a change in the taxonomic status of L. europaeus, it remains a true species. There are 15 subspecies: Lepus europaeus caspicus, L. e. connori, L. e. creticus, L. e. cyprius, L. e. cyrensis, L. e. europaeus, L. e. hybridus, L. e. judeae, L. e. karpathorum, L. e. medius, L. e. occidentalis, L. e. parnassius, L. e. ponticus, L. e. rhodius, L. e. syriacus, and L. e. transsylvanicus (Hoffmann and Smith 2005). Lepus europaeus is widespread and abundant across its geographic range (Flux and Angermann 1990). There is evidence of population declines beginning in the 1960s in association with the intensification of agricultural practices (Smith et al. 2005). It is listed under Appendix III of the Bern Convention in Europe (Vaughan et al. 2003). Several countries have placed L. europaeus on their Red List as "near threatened" or "threatened" (Reichlin 2006). There is growing concern regarding the status of regional forms of this species (Flux and Angermann 1990). Efforts should be made to ascertain total population decline for Europe and Asia (historic range) to determine if it qualifies for listing as Near Threatened. The current Eurasian distribution of Lepus europaeus extends from the northern provinces of Spain, to introduced populations in the United Kingdom and southern regions of Scandinavia, south to northern portions of the Middle East, and has naturally expanded east to sections of Siberia (Flux and Angermann 1990). This species has been introduced as a game species extensively to countries across the globe. These countries are: Argentina, Australia, Barbados, Brazil, Canada, Chile, Falkland Islands, New Zealand (North and South Island), Rèunion, the United Kingdom and the United States (Flux and Angermann 1990). There is recent evidence of an introduced population in Ireland (Reid pers. comm.). This species can be found at elevations ranging from sea level up to 2,300 m (Spitzenberger 2002). Populations of Lepus europaeus have been experiencing declines in many areas across its geographic range in Europe (Flux and Angermann 1990). Population densities range from 0.1/ha to 3.4/ha (Flux and Angermann 1990). A study conducted in the Czech Republic found mean hare densities were highest in habitat with the following characteristics (Pikula et al. 2004): elevation: sea level to 200 m (231.47/10 sq. km); annual snow cover duration: 40-60 days (183.95/10 sq. km); mean annual precipitation: 450-700 mm (174.71/10 sq. km); annual sunshine duration: 1801-2000 (169.72/10 sq. km); mean annual air temperature: >10.0˚C (245.00/10 sq. km); and Pikula et al. (2004) states the highest mean densities with respect to climatic areas was in: "A warm and dry district with mild winter and longer duration of sunshine; a warm and dry district with mild winter and shorter duration of sunshine; a warm and moderately dry district with mild winter" (227.91/10 sq. km) (Pikula et al. 2004). Lepus europaeus is a highly adaptable species that can persist in any number of habitat types (Flux and Angermann 1990). There is a positive association with hare abundance and habitat density and diversity (Smith et al. 2005). When available, weeds and wild grasses are selected by L. europaeus; however, intensified agro-practices have reduced this food source resulting in the selection of crop species (Reichlin et al. 2006). L. europaeus averages three litters/yr, but can vary from one to four litters/yr (Macdonald and Barrett 1993). Litter size can vary with respect to the season, smaller litters produced earlier in the season and larger litters later (Macdonald and Barrett 1993). The birth weight of L. europaeus is approximately 100 g (Macdonald and Barrett 1993). Gestation is 41-42 days and reproduction occurs year round (Macdonald and Barrett 1993). Average life expectancy for this hare is 1.04 years, with a maximum age span in the wild of 12.5 years recorded in Poland (Macdonald and Barrett 1993). Females reach maturity around seven to eight months and male at six months (Macdonald and Barrett 1993). The total length of L. europaeus is 48.0-70.0 cm (Macdonald and Barrett 1993).
Book reference
  • Котенко Т.И., Ардамацкая Т.Б., Дубина Д.В. и др. Биоразнообразие Джарылгача: современное состояние и пути сохранения // Вісник зоології. – 2000. – Спец. випуск. – 240 с.
  • Літопис природи. Природний заповідник «Медобори». 2018, т.26. – Гримайлів, 2019. – 509 с.
  • Селюніна З.В. Зміни складу теріофауни регіону Чорноморського заповідника в результаті інвазії видів (історія вивчення ссавців та господарського освоєння) // Праці Теріологічної Школи. - 2014. - Т.12. - С.69-80.
  • Татаринов К. А. Звірі західних областей України (матеріали до вивчення фауни Української РСР). - Київ: Вид-во АН УРСР, 1956. - 188 с.

Taxonomic branch